Site-specific labelling of proteins with a rigid lanthanide-binding tag.

نویسندگان

  • Xun-Cheng Su
  • Thomas Huber
  • Nicholas E Dixon
  • Gottfried Otting
چکیده

This paper describes a generic method for the site-specific attachment of lanthanide complexes to proteins through a disulfide bond. The method is demonstrated by the attachment of a lanthanide-binding peptide tag to the single cysteine residue present in the N-terminal DNA-binding domain of the Escherichia coli arginine repressor. Complexes with Y(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+) and Yb(3+) ions were formed and analysed by NMR spectroscopy. Large pseudocontact shifts and residual dipolar couplings were induced by the lanthanide-binding tag in the protein NMR spectrum, a result indicating that the tag was rigidly attached to the protein. The axial components of the magnetic susceptibility anisotropy tensors determined for the different lanthanide ions were similarly but not identically oriented. A single tag with a single protein attachment site can provide different pseudocontact shifts from different magnetic susceptibility tensors and thus provide valuable nondegenerate long-range structure information in the determination of 3D protein structures by NMR spectroscopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy.

A new lanthanide tag was designed for site-specific labeling of proteins with paramagnetic lanthanide ions. The tag, 4-mercaptomethyl-dipicolinic acid, binds lanthanide ions with nanomolar affinity, is readily attached to proteins via a disulfide bond, and avoids the problems of diastereomer formation associated with most of the conventional lanthanide tags. The high lanthanide affinity of the ...

متن کامل

Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis.

Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling ...

متن کامل

3-Mercapto-2,6-pyridinedicarboxylic acid: a small lanthanide-binding tag for protein studies by NMR spectroscopy.

Paramagnetic effects from lanthanide ions present powerful tools for protein studies by nuclear magnetic resonance (NMR) spectroscopy provided that the lanthanide can be site-specifically and rigidly attached to the protein. A new, particularly small and rigid lanthanide-binding tag, 3-mercapto-2,6-pyridinedicarboxylic acid (3MDPA), was synthesized and attached to two different proteins via a d...

متن کامل

Prospects for lanthanides in structural biology by NMR.

The advent of different lanthanide-binding reagents has made site-specific labelling of proteins with paramagnetic lanthanides a viable proposition. This brings many powerful techniques originally established and demonstrated for paramagnetic metalloproteins into the mainstream of structural biology. The promise is that, by exploiting the long-range effects of paramagnetism, lanthanide labellin...

متن کامل

Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large residual dipolar couplings and pseudocontact shifts that could be measured easily and agreed very wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chembiochem : a European journal of chemical biology

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2006